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1. Introduction 
We consider linear partial differential operators of order rn in 

space, 

( 1 )  P(x,D)= a"(x)D", 
la1 S m  

where x = ( x l ,  ... , x,) is a point in R,, a=(al,  ... , a,) is an n-tuple of integers 
2 0  with 

n lal= C ai and Da=D; I . . .  Df" with Dj=- .  a 
j =  1 a x j  

The principal part P,,,(x,D) is the homogeneous part of order my 

P,(x,D)= a"(x) D". 
c [ a ]  = m  

(2) 

The classical Cauchy-Kovalevsky theorem asserts that localiy there exists a 
unique analytic solution of the Cauchy problem: if a" and f are analytic in a neigh- 
borhood of 0 and the coefficient of 0," is $0 at 0, then for every set of functions 
q j ( x l ,  ..., x , - ~ ) ,  j = O ,  ..., m-1,  which are analytic in a neighborhood of 0, 
there exists a unique solution of the equation 

(3) P ( x , D ) u = f  

which is analytic in a neighborhood of 0 and satisfies the conditions 

(4) D i u = q j  when x,=O, j = O ,  ..., m-1.  

The hyperplane x,=O, on which the initial data qj  are prescribed, is called the 
initial surface. The condition that the coefficient of DT is + O  at 0 means that the 
initial surface is not characteristic at 0. 

A surface @ ( x )  = @ (xo), where @E C1 and grad @ (xo) =k 0 is called characteristic 
at xo with respect to the differential operator P(x,D) if 

(5 )  Pm(xoy grad @(xo))=O. 
If, in addition, for somej, 

(6) Pc'(xo, grad @(xo))+O, 

simply characteristic 
i- 

where P g ) (  
at xo. { L 
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The Cauchy-Kovalevsky theorem is also valid when the initial surface is an 
analytic surface passing through an arbitrary point xo at which it is assumed 
not characteristic with respect to P(x, 0). In this paper we are concerned with the 
uniqueness assertion of this theorem. 

In 1901, HOLMGREN [ I ]  proved that there can be at most one solution of the 
Cauchy problem even in the class of C" functions. HORMANDER [2, Theorem5.3.11 
proved HOLMGREN'S uniqueness theorem even when distribution solutions are 
allowed: Let P(x,D) have analytic coefficients in an open neighborhood U of 
a point xOER,, let @ be a real-valued function in Ci(U) and suppose that 

(7) Pm(xo, grad @(xo))+O. 

Then there exists a neighborhood U ' c  U of xo such that every distribution u 
in U satisfying the equation P(x, D)u =O and vanishing when @(x)> @(xo), XE U, 
must also vanish in U'. 

The theorem asserts that if u is a distribution solution of P(x,D)u=O defined 
in a neighborhood of xo and vanishing on one side of the surface @(x)=@(xo), 
it must also vanish in a whole neighborhood of xo. Note that U' depends on U 
and not on the particular distribution u. Condition (7) requiring that the surface 
is not characteristic at xo cannot be dropped entirely. In fact if an analytic surface 
@(x) = @(xo) is simply characteristic at every one of its points in a neighborhood 
of xo, then there is a Cm solution of P(x,D)u=O defined in a neighborhood of 
xo, vanishing on one side of the surface and such that xo belongs to the support 
of u. This theorem, originally due to GOURSAT, was shown by HORMANDER [2] 
to be valid for every characteristic plane, not necessarily simply characteristic, 
when the differential operator has constant coefficients. 

The next question is this. Suppose that condition (7) is not satisfied, that is, 
the initial surface is (simply) characteristic at xo, but there is no neighborhood 
of xo such that the piece of the surface contained in it is characteristic at every 
one of its points. What are the conditions under which the conclusion of HOLM- 
GREN'S theorem is still valid, that is, uniqueness of the Cauchy problem still 
holds? The first answer to this question was given by HORMANDER [2] who showed 
that condition (7) can be replaced by a convexity condition. For differential oper- 
ators with constant coefficients, more general conditions were obtained by 
TRAVES [3] .  The main idea in his proof is the same as the one used by HORMANDER. 

In this paper we consider only differential operators with constant coefficients 
and present two theorems. The first theorem contains and extends the result 
of TRAVES, and the second yields as a corollary a new local uniqueness result 
for the wave equation. While the basic idea in the proof is also the same as that 
used originally by HORMANDER, the proof is simpler than the one given by WVES. 

Before closing this introduction, we describe an important application Gf 

theorems concerning the uniqueness of the Cauchy problem. The differential 
equation P(D)u=f may be locally solvable at each point of a domain without 
being globally solvable in the domain. It was shown by MALGRANGE [4] that the 
equation has a distribution solution u in a domain 8 for every jkCm(SZ) if and 
only if 52 is P-convex. An open set 52 is P-convex if to every compact set KcQ 
there is another compact set K' c B such that if u is any dis on with compact 
support in 8 and supp P(-D)ucK then supp u c K ' .  Note that K' is a fixed 
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compact set depending on K and not on the particular distribution u. If u is a 
distribution with compact support in R,,, the convex hull of supp P(-D)u 
coincides with the convex hull of supp u [2, Lemma 3.4.31. It follows that every 
open convex set is P-convex. It also follows that an open set D is P-convex if 
uniqueness of the Cauchy problem for P( - D) holds in a neighborhood of every 
point of its boundary, Le., if at every point xo of the boundary of Q the following 
assertion is valid: to each neighborhood U of x' there exists a neighborhood 
U' c U of xo such that every distribution u in U satisfying the equation P(  - D) u =O 
and vanishing outside of SZ must also vanish in U'. 

As an example, it follows from HOLMGREN'S uniqueness theorem that if D 
is an open set the boundary of which is a C 1  surface containing no points at 
which it is characteristic with respect to P (  - D), then Q is P-convex. Similarly, 
more general sufficient conditions for P-convexity follow from the uniqueness 
results of this paper. Thus, D is P-convex if its boundary is a sufficiently smooth 
surface satisfying the conditions described in Section2 at every point where 
it is characteristic with respect to P(-D). The precise statements are easy to 
formulate, and they will not be presented here. 

The author wishes to thank Professor F. W a s  for many useful conversations and corres- 
pondence. He also wishes to thank Professor G. FICHER~ for his helpful critical comments. 

2. Statement and Discussion of Resdts 
Theorem 1. Let P(D) be a differential operator having real coefficients in the 

principal part. Let U be a neighborhood of a point xOER,, and @ a real-valued 
function in Ck(U) ,  where k is an integer 22, such that grad@(xo)=N+O and 

(8) P,(N)=O, ( P f ) ( N ) ,  ... ,P:'(N))=L+o, 

(9) 
= O  for i = O ,  ..., k-1, 
PO for  i = k ,  0; [@(x) - @(x0)], =ro 

(10) D ~ [ @ ( x ) - @ ( x ~ ) J ~ = ~ ~ > O  when k is even, 

where DL denotes the directional differentiation operator in the direction of L. 
Suppose furthermore that the following condition is satisfied: 

(A) There are integers 12 1 and p 2 2 such that 

Di[grad @(x)-grad @(X~)],=,~=O f o r  i=O, ... , I- 1, 

Pm(z5+N)=O(zp) as z+O, 720, 

for all unit vectors < normal to N and L, and such that either (a) k is even and 
pl>, k or (b) k is odd and p l z  k+ 1. Then there exists a neighborhood U' c U 
of xo such that every distribution u in U satisfving the equation P(D)u=O and 
vanishing when @(x)>@(xo), X E  U, must also vanish in U'. 

Condition (8) means that the surface @(x)  = @(xo) is simply characteristic 
at xo. Note that the vectors N and L are normal. This follows from Euler's 
identity for homogeneous polynomials, 

" 
Nj P$)(N) = m P,(N) = 0.  

j= 1 

22 Arch. Rational Mech. Anal., VoI. 23 
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Condition (9) means that the bicharacteristic line through (xo, N )  (the line through 
xo and parallel to L) is tangent of order k -  1 to the surface @(x) =@(xo) at xo. 
Condition (10) means that, when k is even, in a sufficiently small deleted neigh- 
borhood of xo the bicharacteristic lies in the set where @(x)  > @(xo), that is, on 
the side of the surface where u is assumed to vanish. 

Concerning condition (A) we note that I = 1 implies no additional restriction 
on Qi, and p = 2 implies no additional restriction on P,. In fact, 

n n 

P,(z + N ) =  p,(N) f z j pt)(N) + (*) 2' c j  c k  pF k'(N) f ". , 
j = 1  j , k = l  

and since is assumed normal to L, 
n 

P , ( r ~ + N ) = ( ~ ) ~ z  ~ j [ k P ~ " ( N ) f * " *  
j , k = l  

From these observations the following corollaries follow immediately. 
Corollary 1. When k=2, Theorem1 is valid with condition (A) omitted. 
This result is also a special case of Theorem 5.3.2 of HORMANDER [2] concern- 

Corollary 2. Theoreml is valid with condition (A) replaced by the following 
ing differential operators with variable coefficients. 

condition : 

(A,) DLCgrad @(x)-grad @ ( x ~ ) ~ ~ = ~ ~ = O  for i = O ,  ... , [(k-1)/2]. 

This result was first obtained by T&VES [3, Theorem 6.91. 
Corollary 3. Theoreml is valid with condition (A) replaced by the folhwing 

condition : 

(A,) There is an even integer p 2 k such that 

P, ( zc+N)=O(rP) ,  as z+O, z 2 0 ,  

for all unit vectors 5 normal to N and L. 
Note that condition(A) imposes restrictions on @ and on P, which are 

complementary and that condition (A,) is condition (A) with p =2, while con- 
dition (A,) is condition (A) with I=1. 

Example. Let P(D) be a differential operator in R, with principal part 

Let xo =0, and 

Here grad Qi(0) =N=(O, 0, 0, - l), and L=(O, 0, 1,O). Thus the surface @(x) =O 
is simply characteristic at 0 with respect to P(D), the bicharacteristic through 
(0, N )  coincides with the x3 axis and D,= D,  . In this case k = 3 and p =4, so that 
condition (A,) is satisfied and uniqueness of the Cauchy problem holds. How- 
ever, condition (A,) is not satisfied. 

It should be noted that condition (10) cannot be dropped. In fact, when k =2, 
it was shown by MALGRANGE [5] that if conditions(8) and (9) hold and (10) is 

P,(D)= -D,D:+D:-D:. 

@(x)=x:+x, x3-x4.. 
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replaced by 

(1 1) DL [@(x) - @ ( X O ) ] ~ = ~ O  < 0, 

then there is a C" solution of P(D) u =O defined in a neighborhood of xo, which 
vanishes when @(x) > @(xo) and such that xo belongs to the support of u. The 
proof is based on the fact that condition (1 1) means that in a deleted neighborhood 
of xo the bicharacteristic through (xo, N )  lies on the set where @(x)<@(xo). 
Consequently, it can be shown that there is a surface tangent to @(x)=@(xo) 
at xo which is simply characteristic at each of its points and situated on the 
set where @(x) @(xo). The conclusion follows from the non-uniqueness result 
mentioned in the introduction. For the case when k is even and 2 2  WVES [3] 
proved the same result, assuming the additional condition (Al). 

Theorem2. Theorem 1 is valid with condition (A) replaced by the following 
condition : 

(B)  For aII unit vectors 5 normal to Nand L and aII sufficiently smaII z 20, either 
(a) k is even and Pm(zc + N )  does not change sign, or (b) k is odd and Pm(z 5 + N )  
has the sign of D~[@(x)-@(xo)]x=xo wherever it is not zero. 

An immediate consequence is the following uniqueness result for second order 
hyperbolic differential operators with constant coefficients. 

Corollary 4. Let P(D) be a dgferential operator having as principal part the 
wave operator, 

2 2 P2 (0) = D: + + 0, - - 0,. 

Let U be a neighborhood of a point x'ER, and @ a real-valued function in Ck(U) ,  
where k is an integer 2 2 ,  such that grad @(xo) =N+O, the surface @(x)  =@(xo) 
is simply characteristic at xo, and 

where L =(PA1)(N), .. . , Pg)(N))  and DL denotes the directional dgferentiation 
operator in the direction of L. Then there exists a neighborhood U' c U of xo such 
that every distribution u in U satisfying the equation P(D)u=O and vanishing when 
@(x)>@(xo) ,  X E U ,  must also vanish in U'. 

For the proof we note that if N = ( N l ,  ..., N,)+O and P,, ,(N)=N:+-+-+ 
N2-1-N2=0, then N:+O. Furthermore L=2(N1, ..., Nn-l ,  -Nn), and if 5 =  (cl, ..., 5.) is normal to N and L, it must also be normal to 2N-L=(0 ,  ..., 0, 
4N,) so that g,=O. Now 

Pz(z g + N ) = z 2 ( t f  + * * .  + rg- 1 - g)=Z2(g: + . .. + rg- 1)ZO. 

Thus condition (B) of Theorem 2 is satisfied. 
Condition (12) means that the bichacracteristic line through (xo, N )  (the line 

through xo and parallel to L) is tangent of finite order k- 1 to the surface @(x) = 
@(xo) at xo and that, in a sufficiently small deleted neighborhood of xo, when 
k is even the bicharacteristic lies on the side of the surface where u is assumed 
to vanish, and when k is odd the "forward" bicharacteristic half-line (the ray 
22* 
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with vertex at xo in the direction of L) lies on the side of the surface where u is 
assumed to vanish. 

Before closing this section we remark that the function @ may be replaced 
by any other Ck function @' provided @ and @' define the same surface passing 
through xo and the same "side". In fact, if @ and @' are two Ck functions with 
non-vanishing gradient in U and if the sets {x: XEU, @(x)<@(xo)) and {x: X E  U, 
@'(x) < @(x0)) are identical, then 

where geCk in {x: x e U ,  @(x)+@(xo)}, g€Ck-' in U and g>O. Furthermore, 
if Dk denotes any differentiation of order k, the function 

@'(x) - @'(xO)= g(x) pyx)-  @(xO)] 

LOk g b ) l  [@(x) - @P(xO)l 7 

defined when @(x) + @(xo), can be defined as a continuous function in U vanishing 
when @(x)=@(xo). Thus if @ satisfies any of the conditions stated in this section, 
@' also satisfies the same conditions. 

3. Proof of Theorem 1 
The proof is based on the following lemma due to HORMANDER [2, Lemma3.5.21. 
Lemma. In an open set Qc R, let P(x, D) have analytic coefficients, and 

assume that the coefficient of 0," never vanishes in Q. If u is a distribution in 52 
satisfying the equation P(x,D)u=O in S Z , = { X : X E Q , X ~ < C }  for some c and if 
Q,n supp u is relatively compact in Q, then u=O in Qc. 

We first give an outline of the proof of the theorem. Clearly we can choose 
the coordinates in such a way that xo =O and Nis in the direction of (0, . .. , 0, - 1). 
Using the hypothesis and the fact that we can choose U as small as we need, 
we will construct in a neighborhood of a real-valued analytic function of the 
form 

F(x)=f(x')-x,, f ( O ) = O ,  x'=(x1, ... ,xn-l) ,  

satisfying the following conditions : 
(13) There is a number c>O such that the set 

K={x: X E U ,  @(X)~@(X0), F(x)2_ - c )  

is a compact subset of U. 

(14) P,(gradF(x))+O for all X E U .  

We then make the analytic change of variables 

y j = x j ,  j=l, . . . ,  n-1; y,=-F(x). 

The inverse substitution is also analytic. Let u', SZ, P', and K' be the images of 
u, U, P and K respectively. Condition (14) means that the level surfaces P(x) = 
const are not characteristic with respect to P in U. Hence their images, which 
are the hyperplanes y,=const, are not characteristic with respect to P' in Q. 
Furthermore, since K is a compact subset of U, its image K' ={y : ~ € 5 2 ,  y,Sc> n 
suppu' is a compact subset of 52. It follows from the Lemma that u'=O in ( y :  
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~ E Q ,  yn<c},  and therefore u=O in 

U ‘ = ( x :  X E U ,  F ( x ) >  - c }  

which is a neighborhood of 0 since F(0) =O> -c. In order to complete the proof, 
it remains only to construct a function F possessing the required properties. 

Since N is in the direction of (0, . . . , 0, - 1) and L is normal to N, it follows 
that Pk)(N)=O. Therefore we can make a linear change of variables involving 
only xl, ... , xn-, such that L is in the direction of (0, ... , 0, 1,O). Thus the bi- 
characteristic through (0, N )  coincides with the xn- axis and DL = 0,- 1. For 
convenience we introduce the notation x”=(xl, ... , xn-J  and t=x, , - ,  so that 
x is identified with (x”, t ,  xJ. 

First we obtain an estimate for the function @. If U is a sufficiently small 
neighborhood of 0, we may solve the equation 

@ ( X I ’ ,  t ,  x,)=@(O) 

x, = q ( x ” ,  t )  

with respect to x,, and replace it with the equation 

where q ( O , O ) = O  and q € C k ( U ) .  If @’(x’’, t, x,>=q(x”, t)-x,, then the sets 
(x: X E U ,  @(x)<@(O)) and (x: XE U, @’(x)<O} are identical, and in view of the 
remark at the end of Section 2, we may replace Qi with @’. Thus, after dropping 
the prime, we may assume that Qi is of the form 

(15) Q i ( X ” , t , X n ) = q ( X ” ,  t ) - x , ,  q(O,O)=O. 

Furthermore, since grad @(O) is in the direction of (0, .. . , 0, - l), we also have 

(16) q x j ( O , 0 ) = O ,  j=1, ..., n-2; q,,(O,O)=O. 

Now, we expand q(x”,  t )  in a finite Taylor series, 
n--2 

CP ( X I ’ ,  t )  Qo ( t )  + Qj ( t )  X j  + Q (x”,  t )  + o( I ~ ” l  + I t T) 
j= 1 

where Q,(t) is a polynomial of degree 5 k in t ,  the Qj(t), j =  1 , . . . , n-2, are 
polynomials of degree S k -  1 in t and Q (x”, t )  is a polynomial of degree P k 
in (x“, t )  without terms of degree 5 1 with respect to x”. It follows from (16) that 

Qj(O)=O, j=1 ,  ..., n-2. 

The assumption (9) implies that 
Qo(t)=const fk, 

and condition(10) requires that the constant is positive when k is even. By a 
contraction on t we may assume that 

Qo(t)=dctk, 0=&1. 

Without using condition (A) we can conclude that there are positive constants 
C,, C, and c1 with cl+O as Ix”I, I tl +O such that 

q ( x ” ,  t)lak tk- c, It]  I X”( -cz I x”IZ--cl I tlk. 
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The restriction on @ in condition (A) implies the estimate 

(17) q(x“ ,  t )  2 ok t k -  c, I t 1’ I x‘q - c, I x“12- E ,  I t Ik. 

In what follows we will use the estimate (17) with Zz 1 remembering that with 
Z= 1 the estimate holds without assuming any conditions other than (9) and (10). 

We take as neighborhood of the origin the cylindrical set, 

where 

and set 

with 

U = { x :  (x”, t )EUO,  -zo<x,<zo} 

uo={(xrr, t ) :  Ix”l<xo, - t , < t < t o } ,  

F(x)=f(x”, t ) -x,  

I x1q2 f(x”, t)=adt--. 
E 

The positive constants xo, to ,  t l ,  zo, 6 and E will be chosen sufficiently small 
in order to satisfy conditions (13) and (14). 

In order to satisfy condition (13), it is sufficient to choose the constants such 
that the boundaries 35‘ and aS’ of the surfaces S={x, XE U, @(x) =0} and S’ = 
{x: X E U ,  F ( x ) = - c }  lie on the lateral surface {x: (x”, t)EaUo, -zo<x,<zo} of 
the boundary of U and such that aS’ lies “below” 8s. Since the first requirement 
is satisfied simply by choosing zo large in comparison to xo ,  to and t,, we con- 
centrate on the second, more difficult one. We must choose the constants such 
that on as’ the condition @(x)>O holds. 

On asr we have 
Ix ” I 2  

@(x) = @(x) - [F(x)+ c] = q (x”, t )  - a 6 t +-- c ,  
E 

and by use of the estimate (17) 

C .  
I xrq2 

@ ( x ) ) = a k  tk-c, I ti’ lx”l- c, I x ’ r ] ~ - E 1  I t lk-o 6 t+-- 
E 

Moreover, if E is sufficiently small, we have the estimate 

First, we consider k even and set 

k - 2 1 + ( l /p)  
0 9 0 - 0  , & = t o  Y t1=to ,  6 = t k -  1 + (a) - tk-’  + 1/(2 P) 

where I is restricted to integers 2 k/2 so that E + O  as to +O. (This restriction 
on I is compatible with condition(A).) We state once and for all that all the 
following estimates are valid provided to is sufficiently small. On the parts of 
aS‘ on which I x ” I ~ x o ,  t=,to we have 

@(x) 2 tk, - c, t’o xo - E ,  6 - 6 to - c 

= t: [l - c, t p ) -  E ,  -t i]  - c > (+) tk, - c . 
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On the parts of asf on which Ixrfl=x0, - t l g t l t o ,  we have 

@(x) 2 (1 -E1)  tk - c, I t 1' xo - 6 [ t I +-- 
(24  

2 - -c 1 0  t k + 1 / ( 2 p ) - t ~ a + ( ~ ) t t k , - c > ( $ )  t i - c .  

Thus, when k is even, condition (13) is satisfied if c=($) t t  and cr is equal to 
either + 1  or -1 .  

Next we consider k odd. We discuss only the case o = + l .  The proof for 
cr = - 1 is obtained from the proof for g = + 1 by interchanging to and t ,  through- 
out. We set 

k - 2  2 f 2 / p f  1 / ( 4 ~ )  t - tl + W ~ P )  , & = t o  3 1 - 0  
6 = 6- 1 + 1 / ( 4 ~ ) ,  - t k - ' + 1 / ( 2 ~ )  xo- 0 

where I is restricted to integers gk/2+l/p so that E + O  as to +O.  On the part 
of as' on which IxffIg;xo, t = t o  we have (as in the case of k even) 

@(X)>(+) t k , - C .  

On the part of asf on which [ x" I gxo,  t = - t ,  we have 

@(x)~-( l+&1)t : -c l t :Xo+6t l -c  
t k + 1 / ( 2 ~ ) [ 1 - ( 1 + &  t ( k - 2 1 / ( 4 P ) - ~  t V ( 4 P )  

1 0  1 - 
- 0  1 0  

>(+) t k o + 1 / ( 2 P L C .  

On the part of asf on which lxf'[  =xo, - t l  S t s t ,  we have 

@(x)& -t:-c, tkx0-E1 tk,-6to+-- x% 
(2 4 

=(+I f - 5 / ( 4 ~ )  - t k + k / ( 4 ~ )  - c t k +  1 / ( 2 ~ )  
0 0 1 0  

- E 1  t; - t i+ 1 / ( 4 P )  - c >(*) $ 5 / ( 4 p )  - c .  

Thus, when k is odd, condition (13) is satified if c=(+) tk,+l/('J'). 

It remains to verify condition (14). We have 

grad F = ( f x , t  9 f, , - 1) 9 f x , , = ( f x , ,  ... 7 fX,J 5 

and for our choice of F, 

Furthermore, 
fx . .= -2Xff/E, &=os. 

P,(Xff ,  T, - 1) =P,(Xf', 0, - 1) + T(a/aT) P,(X", 0, - 1) + 
+(+) T2(a2/aT2)P,(X",0, -1)+*-, 

and since (d /dT)  P,(O, 0, - 1) =a where a is a positive constant, we have 

P,(X", T, -1)=[a+R(X",T)]  T+P,(X",O, -1) 

where R(X",T) is a polynomial in X", T without a constant term. Hence 

2x" , ( 2x" (15) P,(gradF)= 0 6 + P m  -- 
E 
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The restriction on P,,, in condition (A) means that there is a positive constant C3 
such that 

I Pm(X", 0, - 1) [ 5 c3 I X ' y ,  

for I X"( sufficiently small. When k is even 

6 = tk- 1 +(+) xg= t;- 1 / ( 2 P ) ,  
E 

0 

and taking (T = + 1, we have 

P,(grad F)I(+) a t;-'+*-C3 2p tP,"*>O 

in U for sufficiently small to,  since p l z k .  When k is odd and ~ = 1 ,  we have 

6 =to k - - l + 1 / ( 4 l J )  Y X , = t ; - 2 / P + 1 / ( 4 " ) ,  
E 

so that 
Pm(gradF)&(+) a t ~ - ' f 1 / ( 4 p ) - C 3  2PtgPz-2+$>0 

in U since p 12 k +  1. In a similar way, when k is odd and (T = - 1 , we have 
Pm(grad F )  < O  in U. 

4. Proof of Theorem 2 

The proof of Theorem 2 is identical with the proof of Theorem 1 with p = 2  
and I =  1 except that in verifying condition (14) condition (B) is used in place 
of condition (A). In fact it follows from equation (15) that Pm(grad F )  + O  in U 
provided to is sufficiently small and the sign of rs agrees with the sign of Pm( - ~ x " / E ,  
0, -1) wherever it i snot  zero. When k is even, (T can be chosen as we please. 
When k is odd, (T has the sign of [D,- @ ( x ) ] ~ = ~ .  

The work presented in this paper was done under NASA NGR 15-005-021 and under a Ful- 
bright research grant at the University of Rome. 
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